Inductor specification

  • Inductance L (\mu H) (tested at a certain test conditions for example 100 KHz, 0.1 V_{rms}, 0 A DC)
  • Inductive tolerance: It is the allowed amount of variation from the nominal value specified by the manufacturer (e.g. ±20%).
  • Rated operating voltage (across inductor)
  • DC Resistance (DCR)
  • AC Resistance (ACR)
    • AC loss that comes from losses in the core as the magnetic field transitions. This includes eddy current losses and hysteresis losses.
    • The AC resistance of the wire due to the skin effect. It can be important at very high frequencies.
  • Maximum DC current I_{DC}: Maximum DC current is the DC current at which the inductance falls to 90% of its nominal value or until its temperature rise reaches 30 °C.

Figure: Inductance vs DC Bias Load (or DC Bias Characteristic)

DC Bias current relates to a constant current element that is added to the AC signal.

  • Incremental Current Rating: The DC bias current that causes an inductance drop of 5% from the initial zero DC bias inductance value.
  • I_{rms} or RMS current:
    • I_{rms} for a 20°C rise above 25°C ambient temperature
    • I_{rms} for a 40°C rise above 25°C ambient temperature
  • Saturation current I_{SAT}: The DC bias current that causes the inductor to drop by a specified percentage (e.g. 10% or 20%) from its value without current. See Figure Inductance vs DC Bias Load (or DC Bias Characteristic)
  • Q factor or Quality factor: Q=\frac{2 \pi f L}{R}=\frac{X_{L}}{R}
  • Self-Resonant Frequency (SRF) or f_{o} in Hz
  • Curie temperature T_{C} (in degrees Celsius): It is the temperature at which the core material start to lose its magnetic properties.
  • Inductance temperature coefficient: The change in inductance per unit temperature change. Measured under zero bias conditions and expressed in parts per million (ppm).
  • Resistance temperature coefficient: The change in DC wire resistance per unit temperature change. Measured at low DC Bias (<1 VDC) and expressed in parts per million (ppm).
  • Magnetic saturation flux density B_{SAT}: At this value of flux density, all magnetic domains within the core are magnetized and aligned.
  • Shielding
    • with shield
    • without shield
  • Electromagnetic interference (EMI): It refers to the magnetic field radiated away from the inductor into space. The magnetic field may cause interference with other magnetically sensitive components.
  • Core material
    • Ferrite cores
    • Iron powder cores
  • Storage temperature range
  • Operating temperature range
    • Ambient temperature range not including self-temperature rise
    • Product temperature range including self-temperature rise. The operating temperature T_{Op} is equal to the ambient temperature T_{Amb} plus component’s self-heating \Delta T. The maximum allowable temperature for an inductor is the maximum ambient temperature plus the maximum temperature rise.
  • Moisture Sensitivity Level (MSL)